Monthly Archives: March 2015
Secret of Rocket Science: Getting the Details Right
“This is not rocket science…” How many times have you heard that expression? In general, that statement is used to indicate that whatever you’re doing is not overly complex. It’s a tribute to the perceived complexity of rocket science. But just what is rocket science? Is it some arcane form of engineering that doesn’t relate to the things done in the commercial world? Or is there more to it? And, more importantly, can rocket science be relevant in today’s fast-paced market?
Dictionary.com’s first definition of rocket science is “rocketry” (English teachers used to scream at me for using different forms of the word in the definition but dictionaries seem to get away with it). Rocketry, in turn, is defined as “the science of rocket design, development, and flight.” The website’s second definition of rocket science is “something requiring great intelligence, especially mathematical ability.” So, on the surface, it appears rocket science is just that, the science of building and launching rockets with a nod toward things being complicated. Neither of those definitions satisfies me. Based on my experience in the industry, I believe they are incomplete. Only when you get into the nitty-gritty of a space launch does the essence of rocket science become clear. Rocket science is all about getting the details right.
With a space launch there are no second chances. There are no do-overs. If the launch fails, that’s it. A billion dollars may end up in the ocean, or scattered in pieces around the launch pad, or in a useless orbit around the Earth. No second chances. Once in space you can’t bring your malfunctioning satellite or probe into a local garage for repairs. You build in redundancies when you can and work to reduce the risk as much as you can.
The launch vehicle and its payload combined have hundreds of thousands of parts, subassemblies, and assemblies that must all work and function together for success to occur. A system with a million parts and 99.99% reliability can still exhibit a hundred malfunctions, of which any one may lead to a catastrophic failure. So the emphasis in the commercial space launch world is on the details. You have to get them all right. So when it comes down to it, rocket science is really the science of managing millions of details, while also working to bring operational risk down.
How does that relate to you? Your project of replacing a machine on your assembly line, or developing a new drug, or testing your electronics package certainly doesn’t involve millions of details. True, but it still may entail hundreds, or even thousands, of interrelated tasks, components, and tests or inspections when you add up everything that has to be done. These are the details you must account for in what you do. Furthermore, there may be one detail that is ignored because your team members believe someone else must be paying attention to it. You find this out after it rises up and bites you in the butt. Or there may be a detail you just didn’t think of. There’s a reason why project management is one of the core competencies in rocket science. But it’s far from the only one.
Every component, subassembly, and assembly used in a rocket launch is either analyzed or tested to determine its suitability for use during the launch or on the payload. For many projects and products this idea of analyzing and testing everything may seem like overkill and too expensive and time consuming. In the commercial world it probably is. Until you have a problem. Let me give you a real life past example. An automobile OEM supplier couldn’t seem to get its electronics to pass its shock or vibration testing. Since the electronics were packaged the way it was done previously they were confident in the design. However, to be on the safe side, because this new version was slightly different in size and shape, they decided to run some tests. They used the same fixture they always used that never had a problem. They made what seemed like a very slight modification to that fixture to accommodate new mounting holes. Yet the parts failed.
In discussions with them, the question arose whether it was the actual electronic hardware that failed or whether it was something in the test set-up causing the failure. They didn’t have the capability to run the analysis to know whether the fixture, the environment, or the part design was the cause. My company had the capability. Our engineer on the project had done this sort of analysis countless times. We proved the fixture was resonating, adding higher loads than the electronic components would see in real life. We helped them redesign the fixture and their parts passed.
Rocket Science Technologies, Inc. has the knowledge and experience to help you in situations like this. We have the experience to guide you through this kind of failure recovery in an efficient manner to find a solution. We can also help you plan your next new product design and development to help avoid these kinds of issues. We can help you corral those details so the risk of failure or issues is significantly decreased. We can’t guarantee success, but we can improve the chances dramatically. And, in the case of something going wrong, we can help you get back on track and recover.
Rocket Science Technologies, Inc., has gathered engineers, physicists, mathematicians, and project managers as associates, available on an as-needed basis, to add their know-how to help you get past even the most challenging technical obstacles. All of RST’s personnel have shown through their careers a propensity for taking on tough problems and solving them. We relish solving technical challenges. We also understand the needs of the commercial market for reduced costs and higher velocity to production and market. Check us out at http://rocketscitech.com.