Blog Archives

The Sky Is Not Blue and the Flim-Flam Against Global Warming

See if you can identify this “discussion”.

Doubter: “The sky is not blue.”

Scientist’s Initial Response: “Can’t you see it? Just look at it.”

Doubter’s Response: “No. I’m color blind.”

Scientist’s Response: “Well, everyone else who isn’t color blind can see it.”

Doubter’s Response: “How do you know that you’re really seeing blue? How do you know that something in our diets isn’t impacting our color perception?”

Scientist’s Response: “Neurologists say that isn’t true. They’ve conducted studies to show we see the real blue.”

Doubter’s Response: “They’re all conspiring because it would be embarrassing to them to admit they hadn’t picked this up on their own. The government is paying all the researchers to support “the sky is blue theory” because of the cost of changing all those American flags to the real blue.”

Now the same argument in a Global Warming context.

Doubter: “Carbon dioxide isn’t causing Global Warming.”

Scientist: “We have the data supporting that it does.”

Doubter: “I’m not a scientist. How can I interpret this?”

Scientist: This has all been reviewed by peers and thousands of scientists around the world.

Doubter: “This is all a conspiracy by Liberals who want big government. All of the scientists are going along with it so they can be funded with work. NASA and NOAA falsified the data.”

My response to the doubter (and I hope yours): “Really?”

Using the Risk Management Process to Address Global Warming

I’m a trained project manager with a project management certification or PMP. As such, part of my PMP training includes risk management, a process used in industry to manage the prospective risks or uncertainties encountered during a project. After reviewing the discussion on global warming I’ve come to a conclusion that risk management needs to be applied to the global warming debate. Risk management provides an approach to dealing with an issue that has some probability of occurrence and has the potential for devastating consequences. If you know something is definitely going to happen it’s easier to weigh the costs and make a decision to deal with the consequences if they’re bad enough to warrant action. It becomes more difficult to deal with the consequences of something that might happen. In the latter case, you have to weigh the costs of mitigating something that might not happen (and therefore you’ve wasted the money) versus not doing something and dealing with the consequences. The tradeoff is like determining to purchase insurance.

The idea of my applying risk management to global warming came about during my involvement in a number of LinkedIn group discussions centering on whether global warming/climate change is real or not, and to what degree humanity is responsible for it. Some of the discussions occurred in LinkedIn discussion groups representing science organizations, or at least people interested in science, and were quite technical in nature. The discussions delved into interpretation of geological data particularly from ice cores and evidence of past climate cycles. In the discussions, it seemed to me the term global warming referred to human-influenced changes in climate, while climate change is used for natural, long term changes in climate.

The media has reported that a majority of climate scientists support the idea of human-influenced global warming. In these LinkedIn discussions I observed the scientific opposition centered on the interpretation of geological data, and the lack of validation of climate models. It was pointed out in the LinkedIn discussions that the primary climate prediction model is in its 11th generation of iteration and we’re still not accurately modeling what has occurred already, no less the future. A recent article in the NY Times confirmed that the simulations are struggling, not because they’re wrong, but because they are limited by the complexity of the system and also by current computer capabilities.

To me, with my experience as an engineering project manager, it comes as no surprise that computer models and simulations sometimes don’t match measured data perfectly. The more complex a system, the more difficult it is for a computer model to perfectly match real world data. In some instances, as in the case of climate modelling, it becomes an iterative process, where each successive version of the model gets closer to the data as the modelers gain a better understanding of the physics, i.e., the response, of the system to various inputs. Sometimes, if a system is complex enough, it becomes a matter of available computer power. However, even when the model correlation to the data isn’t perfect, the simulations can be used to predict data trends. The models then become qualitative tools to help make decisions concerning a course of action.

Climate models are among the most complicated of all technical simulations, requiring the most powerful computers we have. I expect it will be a while before we can solve these models with a fine enough grid to get us the answers we need. Problem is, while we’re waiting, the Earth may be changing.

Prompted by the discussions and my thought of applying risk management to global warming I did research into the consequences of global warming, focusing on the potential impact to the coast of the United States if the oceans rise 7-10 feet as predicted. This is one of the primary outcomes described by climate scientists. Note, I was dealing with these as potential outcomes. So if the seas rise by the levels expected, a good portion of Manhattan would be under water, as would parts of the Carolinas, the Florida peninsula, and parts of Texas. The West Coast, with its higher shorelines, at least north of Los Angeles, would be less impacted. If you look at these consequences worldwide it gets even worse. Coastal flooding due to storm surge will also increase significantly. There will be many more Hurricane Sandys, and they will become more violent.

I also investigated the predicted weather pattern shifts across the US. Increased droughts are projected for the West Coast, including more forest fires and water shortages. Parts of the Midwest would also face severe droughts, key habitat changes, and higher temperatures severely impacting its ability to continue acting as the breadbasket of America. Alterations in habitats to birds and other animals will have major consequences on the insect population. There is also an expectation for the East Coast of increased occurrences of storms like Hurricane Sandy, possibly with even more increased intensity. Weather over the Midwest is also expected to turn more violent.

These were indeed dire predictions. Even if they’re only half right, the negative impact on our economy, and the potential for loss of life are still very high. Project management practices dictate that when identifying a risk with consequences to the project potentially as dire as the global warming predictions, even if the engineering simulations were mixed or uncertain, a risk mitigation plan is required. Even if you believe the probability is only 20% that global warming is real, the consequences are significant enough to require a plan and a response.

So how do we deal with a risk like this? In industry, risk management provides a process to address risk. A quick sidelight. I received my PMP certification from the Project Management Institute, which is recognized worldwide. PMI publishes the Guide to Project Management Body of Knowledge (PMBOK®) which summarizes the best processes involved in project management. Risk management is one of those processes included in the PMBOK®. There are four methods of dealing with risk:

  • Accept the risk: Acknowledge the risk and accept the consequences.Let’s look at the four options of dealing with the risks of global warming and climate change:
  • Avoid the risk: Remove the risk by eliminating whatever is causing the risk
  • Transfer the risk: Pass it on to someone else, e.g., purchasing insurance
  • Mitigate the risk: Make changes to reduce the probability of the risk occurring or prepare plans to ameliorate the consequences once they happen

Let’s look at the four options of dealing with the risks of global warming and climate change:

  • Avoiding the risk involves eliminating the causes of the risk. I don’t believe we have a really good option for avoiding global warming/climate change at this point. If the changes are the result of natural climate processes, as some advocate, there is little we can do to avoid them. If they’re due to human influence, I think it’s impractical to expect an instantaneous change to less polluting energy sources. It’s unreasonable to expect every country in the world, or even the major polluters, to stop using fossil fuels immediately. It will take a decade or more to get the plan in place and to begin making all the changes. Politically, it just isn’t going to happen. Besides, we’re already seeing some of the predicted effects. I believe we’re just too far along to avoid at least some of the global warming/climate change consequences. (This is different than mitigating them which will be described later).
  • Transferring the risk is the next method of dealing with risk. To me this method is unacceptable because the consequences are even half as bad as predicted, there isn’t enough insurance money in the world to pay for the consequences, not to mention the cost in lives lost to flooding and famine. The only thing we’d be doing is transferring the consequences to our children.
  • Accepting the risk signifies indicates the risk is acceded to because the cost of risk avoidance is unacceptable compared to the cost of the consequence. This category is usually used only for risks with low impact consequences or for risks with damaging consequences but with an extremely low probability of occurrence. Opponents of global warming will obviously favor this approach. It’s the one seen as having the least near-term impact on the economy because we continue on our path of utilizing fossil fuels.
  • Finally, the fourth method, risk mitigation. This involves taking action to reduce the probability of occurrence of the risk or to reduce its impact. Risk mitigation, then, requires we start addressing those consequences regardless of cause (natural or manmade). For example, we can begin planning our response to coastal flooding on a national scale. If there is a significant probability that human-induced component to changes in climate, then it may also not be too late to reduce the impact and perhaps even influence the degree to which it occurs (as opposed to completely avoiding it). We can accomplish this by reducing the emission of greenhouse gases by increasing the use of alternative energy sources. Replacing old industries with new is part of the creative destruction process that has occurred throughout human industry. (See my LinkedIn Pulse post Horse Manure, Buggy Whips, and Global Warming) In creative destruction, the displaced workers often find work in the new industry.

In my opinion, it comes down to which is worse:

  1. Accepting the impact of global warming/climate change happening and we aren’t prepared for it with all of the consequences because we wanted to keep the status quo, or
  2. Waiting for 100% proof that global warming is real in order to protect the status quo and then finding out that it’s too late for many of the mitigations identified, or
  3. Begin the mitigations identified to reduce the effects of global warming/climate change (and accepting the cost of near-term economic dislocations) and then finding out climate change is a false alarm.I guess your answer depends on whether you care more about yourself or your grandkids.

Horse Manure, Buggy Whips, and Creative Destruction with Global Warming

The process of creative destruction is often ignored in the debate about global warming, climate change, or whatever people decide to call it, Opponents focus on the costs of making changes as we convert to renewable energy and the reduction in our carbon footprint. They claim these technology changes will damage the economy while insisting the supposed high costs of renewable energy and sustainable manufacturing will cost the United States millions of jobs and weaken our economy. To that I say balderdash.

The introduction of new technologies is accompanied by something called creative destruction when leading companies, or even industries, apparently successful at the time of the introduction, disappear. For example, the arrival of the industrial revolution brought about an end to those magnificent artisans of the pre-industrial economies. e.g., the blacksmith, the shoemaker, the weaver, etc. While those old jobs disappeared and were replaced, instead, by factory and white collar positions. We moved from a rural society to an urban society.

Along with that change came a new set of issues. In 1900 there were 100,000 or more horses in New York City, creating thousands of pounds of manure that had to removed. Hundreds if not thousands of workers toiled daily to clean up that mess. When it was introduced, the automobile was touted as a means of cleaning up the cities (among other things). I bet t the workers who cleaned those city streets along with buggy whip makers were among those who derided these new fangled toys, and probably shouted, “Get a horse!” With the introduction of the car came hundreds of companies trying to make them and capture the market. The manure workers and buggy whip makers probably also pointed to the failing early automobile companies as showing the folly of this technology. (Just like the opponents of global warming are decrying the failure of companies like Solyandra). And true to form most of these companies went out of business or were bought out. The car seemed to be a toy, a plaything of the rich, much as the Tesla electric car is today.

Then along came Henry Ford and the Model “T” automobile and everything changed. He made the Model “T” “everyman’s” car while paying the highest wages in the industry to enable his workers to afford to own their own car. Sure, at the time, it was probably still more expensive to purchase than a horse, but what you could do with it! Now the average worker could afford cars.

What do you think happened to those workers who cleaned the manure off city streets? They probably ended up with jobs paving them. And those who worked for the buggy whip makers? They found higher paying jobs in automobile factories. One man’s risk is another’s opportunity.

I’m reminded of that wonderful diatribe by Danny DeVito in the movie “Other People’s Money” where he played a 1980s style corporate raider, Larry the Liquidator, trying to take over a family-run wire-making manufacturing firm in New England. In his diatribe he talks about buggy whip makers. “You know, at one time there must’ve been dozens of companies makin’ buggy whips.And I’ll bet the last company around was the one that made the best goddamn buggy whip you ever saw.” Then the zinger. “Now how would you have liked to have been a stockholder in that company?”

Yes, there will be disruption as we switch to renewable energy and sustainable manufacturing. But in the long run, new industries will be created and the economy will grow based on those new industries. That’s just the way the world works. And, better yet, we may have saved the world for our children and grandchildren, but that’s a subject for another day.